The Fragility of Thermoelectric Power Factor in Cross-Plane Superlattices in the Presence of Nonidealities: A Quantum Transport Simulation Approach
نویسندگان
چکیده
Energy filtering has been put forth as a promising method for achieving large thermoelectric power factors in thermoelectric materials through Seebeck coefficient improvement. Materials with embedded potential barriers, such as cross-plane superlattices, provide energy filtering, in addition to low thermal conductivity, and could potentially achieve high figure of merit. Although there exist many theoretical works demonstrating Seebeck coefficient and power factor gains in idealized structures, experimental support has been scant. In most cases, the electrical conductivity is drastically reduced due to the presence of barriers. In this work, using quantum-mechanical simulations based on the nonequilibrium Green’s function method, we show that, although power factor improvements can theoretically be observed in optimized superlattices (as pointed out in previous studies), different types of deviations from the ideal potential profiles of the barriers degrade the performance, some nonidealities being so significant as to negate all power factor gains. Specifically, the effect of tunneling due to thin barriers could be especially detrimental to the Seebeck coefficient and power factor. Our results could partially explain why significant power factor improvements in superlattices and other energy-filtering nanostructures mainly fail to be realized, despite theoretical predictions.
منابع مشابه
بهبود بازده تبدیل انرژی حالت جامد با استفاده از نانوساختارهای ترموالکتریک
Solid-state energy conversion technologies such as thermoelectric refrigeration and power generation require materials with low thermal conductivity yet high electrical conductivity and Seebeck coefficiency. Although semiconductors are the best thermoelectric materials, they rarely have the such features. Nanostructures such as superlattices, quantum wires, and quantum dots provide novel method...
متن کاملاثر تهیجایهای گسترده بر خواص گرمایی نانونوارهای آرمچیری گرافن
This paper shows a theoretical study of the thermal properties of armchair grapehen nanoribbons in the presence of extended vacancies. Each graphene nanoribbons formed by superlattices with a periodic geometric structure, different size and symmetry of vacancies. The phonon dispersion, specific heat and thermal conductivity properties are described by a force-constant model and also by Landauer...
متن کاملImproved thermoelectric power factor in metal-based superlattices.
In this paper we present a detailed theory of electron and thermoelectric transport perpendicular to heterostructure superlattices. This nonlinear transport regime above barriers is also called heterostructure thermionic emission. We show that metal-based superlattices with tall barriers can achieve a large effective thermoelectric figure of merit (ZT > 5 at room temperature). A key parameter t...
متن کاملThermoelectric properties of HfN/ScN metal/semiconductor superlattices: a first-principles study.
Nitride-based metal/semiconductor superlattices are promising candidates for high-temperature thermoelectric applications. Motivated by recent experimental studies, we perform first-principles density functional theory based analysis of electronic structure, vibrational spectra and transport properties of HfN/ScN metal/semiconductor superlattices for their potential applications in thermoelectr...
متن کاملSeebeck Enhancement Through Miniband Conduction in III–V Semiconductor Superlattices at Low Temperatures
We present theoretically that the cross-plane Seebeck coefficient of InGaAs/ InGaAlAs III–V semiconductor superlattices can be significantly enhanced through miniband transport at low temperatures. The miniband dispersion curves are calculated by self-consistently solving the Schrödinger equation with the periodic potential, and the Poisson equation taking into account the charge transfer betwe...
متن کامل